Friday, October 26, 2007

Relay Toggle Circuit Using a 555 Timer



This 555 timer circuit below toggles a relay when a button is pressed. Pins 2 and 6, the threshold and trigger inputs, are held at 1/2 the supply voltage by the two 10K resistors. When the output is high, the capacitor charges through the 100K resistor, and discharges when the output is low. When the button is pressed, the capacitor voltage is applied to pins 2 and 6 which causes the output to change to the opposite state. When the button is released, the capacitor will charge or discharge to the new level at the output (pin 3). The parts are not critical, the resistors can be somewhat higher or lower, but the 2 resistors at pins 2 and 6 should be equal values, and the resistor connected to the cap should be 10 times greater or more.
Advantages of this circuit are the large hystersis range at the input which avoids false triggering, and only a few parts are needed for construction. One disadvantage is the relay may be engaged when power is first applied. To solve this problem, you could tie the reset line (pin 4) to another resistor/capacitor combination with the capacitor at ground and the resistor at the +V point. This will cause pin 4 to be held near ground for a short period which will reset the output when power is applied.
The 100 ohm resistor and 100uF capacitor serve to filter noise on the supply line if the circuit is used in a automotive application. They may not be necessary. The circuit may work well without those parts.

Touch Activated Light




The circuits below light a 20 watt lamp when the contacts are touched and the skin resistance is about 2 Megs or less. The circuit on the left uses a power MOSFET which turns on when the voltage between the source and gate is around 6 volts. The gate of the MOSFET draws no current so the voltage on the gate will be half the supply voltage or 6 volts when the resistance across the touch contacts is equal to the fixed resistance (2 Megs) between the source and gate.
The circuit on the right uses three bipolar transistors to accomplish the same result with the touch contact referenced to the negative or ground end of the supply. Since the base of a bipolar transistor draws current and the current gain is usually less than 200, three transistors are needed to raise the microamp current level through the touch contacts to a couple amps needed by the light. For additional current, the lamp could be replaced with a 12 volt relay and diode across the coil.

Varying brightness AC lamp




In this circuit, an SCR is used to slowly vary the intensity of a 120 volt light bulb by controlling the time that the AC line voltage is applied to the lamp during each half cycle. Caution: The circuit is directly connected to the AC power line and should be placed inside an enclosure that will prevent direct contact with any of the components. To avoid electrical shock, do not touch any part of the circuit while it is connected to the AC power line. A 2K, 10 watt power resistor is used to drop the line voltage down to 9 volts DC. This resistor will dissipate about 7 watts and needs some ventilation. Operation: A couple NPN transistors are used to detect the beginning of each half cycle and trigger a delay timer which in turn triggers the SCR at the end of the delay time. The delay time is established by a current source which is controlled by a 4017 decade counter. The first count (pin 3) sets the current to a minimum which corresponds to about 7 milliseconds of delay, or most of the half cycle time so that the lamp is almost off. Full brightness is obtained on the sixth count (pin 1) which is not connected so that the current will be maximum and provide a minimum delay and trigger the SCR near the beginning of the cycle. The remaining 8 counts increment the brightness 4 steps up and 4 steps down between maximum and minimum. Each step up or down provides about twice or half the power, so that the intensity appears to change linearly. The brightness of each step can be adjusted with the 4 resistors (4.3K, 4.7K, 5.6K, 7.5K) connected to the counter outputs.
The circuit has been built by Don Warkentien (WODEW) who suggsted adding a small 47uF capacitor from ground to the junction of the current source transistor (PNP) to reduce the digital stepping effect so the lamp will brighten and fade in a smoother fashion. The value of this capacitor will depend on the 4017 counting rate, a faster rate would require a smaller capacitor.

Variable Voltage and Current Power Supply




Another method of using opamps to regulate a power supply is shown below. The power transformer requires an additional winding to supply the op-amps with a bipolar voltage (+/- 8 volts), and the negative voltage is also used to generate a reference voltage below ground so that the output voltage can be adjusted all the way down to 0. Current limiting is accomplished by sensing the voltage drop across a small resistor placed in series with the negative supply line. As the current increases, the voltage at the wiper of the 500 ohm pot rises until it becomes equal or slightly more positive than the voltage at the (+) input of the opamp. The opamp output then moves negative and reduces the voltage at the base of the 2N3053 transistor which in turn reduces the current to the 2N3055 pass transistor so that the current stays at a constant level even if the supply is shorted. Current limiting range is about 0 - 3 amps with components shown. The TIP32 and 2N3055 pass transistors should be mounted on suitable heat sinks and the 0.2 ohm current sensing resistor should be rated at 2 watts or more. The heat produced by the pass transistor will be the product of the difference in voltage between the input and output, and the load current. So, for example if the input voltage (at the collector of the pass transistor) is 25 and the output is adjusted for 6 volts and the load is drawing 1 amp, the heat dissipated by the pass transistor would be (25-6) * 1 = 19 watts. In the circuit below, the switch could be set to the 18 volt position to reduce the heat generated to about 12 watts.

Expandable 16 Stage LED Sequencer





The circuit below uses a hex Schmitt Trigger inverter (74HC14) and two 8 bit Serial-In/Parallel-Out shift registers (74HCT164 or 74HC164) to sequence 16 LEDs. The circuit can be expanded to greater lengths by cascading additional shift registers and connecting the 8th output (pin 13) to the data input (pin 1) of the succeeding stage. A Schmitt trigger oscillator (74HC14 pin 1 and 2) produces the clock signal for the shift registers, the rate being approximately 1/RC. Two additional Schmitt Trigger stages are used to reset and load the registers when power is turned on. Timing is not critical, however the output at pin 8 of the Schmitt Trigger must remain high during the first LOW to HIGH clock transition at pin 8 of the registers, and must return low before the second rising edge to load a single bit. If the clock rate is increased, the length of the signal at pin 9 of the Schmitt Trigger should be reduced proportionally to avoid loading more than one bit. The HCT devices will normally provide about 4 mA (source or sink) from each output but can supply greater currents (possibly 25 mA) if only one output is loaded. The common 150 ohm resistor restricts the current below 25 mA using a 6 volt power source. If the circuit is operated with two or more LEDs on at the same time, resistors may be needed in series with each LED to avoid exceeding the maximum total output current for each IC of 25 mA. For greater brightness, individual buffer transistors can be used as shown in the 10 stage LED sequencer on this same page.

Wednesday, October 17, 2007

Microphone Pre-Amp


Simple combination lock


PARTS AND MATERIALS
4001 quad NOR gate (Radio Shack catalog # 276-2401)
4070 quad XOR gate (Radio Shack catalog # 900-6906)
Two, eight-position DIP switches (Radio Shack catalog # 275-1301)
Two light-emitting diodes (Radio Shack catalog # 276-026 or equivalent)
Four 1N914 "switching" diodes (Radio Shack catalog # 276-1122)
Ten 10 kΩ resistors
Two 470 Ω resistors
Pushbutton switch, normally open (Radio Shack catalog # 275-1556)
Two 6 volt batteries
Caution! Both the 4001 and 4070 ICs are CMOS, and therefore sensitive to static electricity!
This experiment may be built using only one 8-position DIP switch, but the concept is easier to understand if two switch assemblies are used. The idea is, one switch acts to hold the correct code for unlocking the lock, while the other switch serves as a data entry point for the person trying to open the lock. In real life, of course, the switch assembly with the "key" code set on it must be hidden from the sight of the person opening the lock, which means it must be physically located elsewhere from where the data entry switch assembly is. This requires two switch assemblies. However, if you understand this concept clearly, you may build a working circuit with only one 8-position switch, using the left four switches for data entry and the right four switches to hold the "key" code.
For extra effect, choose different colors of LED: green for "Go" and red for "No go."
INSTRUCTIONS
This circuit illustrates the use of XOR (Exclusive-OR) gates as bit comparators. Four of these XOR gates compare the respective bits of two 4-bit binary numbers, each number "entered" into the circuit via a set of switches. If the two numbers match, bit for bit, the green "Go" LED will light up when the "Enter" pushbutton switch is pressed. If the two numbers do not exactly match, the red "No go" LED will light up when the "Enter" pushbutton is pressed.
Because four bits provides a mere sixteen possible combinations, this lock circuit is not very sophisticated. If it were used in a real application such as a home security system, the "No go" output would have to be connected to some kind of siren or other alarming device, so that the entry of an incorrect code would deter an unauthorized person from attempting another code entry. Otherwise, it would not take much time to try all combinations (0000 through 1111) until the correct one was found! In this experiment, I do not describe how to work this circuit into a real security system or lock mechanism, but only how to make it recognize a pre-entered code.
The "key" code that must be matched at the data entry switch array should be hidden from view, of course. If this were part of a real security system, the data entry switch assembly would be located outside the door, and the key code switch assembly behind the door with the rest of the circuitry. In this experiment, you will likely locate the two switch assemblies on two different breadboards, but it is entirely possible to build the circuit using just a single (8-position) DIP switch assembly. Again, the purpose of the experiment is not to make a real security system, but merely to introduce you to the principle of XOR gate code comparison.
It is the nature of an XOR gate to output a "high" (1) signal if the input signals are not the same logic state. The four XOR gates' output terminals are connected through a diode network which functions as a four-input OR gate: if any of the four XOR gates outputs a "high" signal -- indicating that the entered code and the key code are not identical -- then a "high" signal will be passed on to the NOR gate logic. If the two 4-bit codes are identical, then none of the XOR gate outputs will be "high," and the pull-down resistor connected to the common sides of the diodes will provide a "low" signal state to the NOR logic.
The NOR gate logic performs a simple task: prevent either of the LEDs from turning on if the "Enter" pushbutton is not pressed. Only when this pushbutton is pressed can either of the LEDs energize. If the Enter switch is pressed and the XOR outputs are all "low," the "Go" LED will light up, indicating that the correct code has been entered. If the Enter switch is pressed and any of the XOR outputs are "high," the "No go" LED will light up, indicating that an incorrect code has been entered. Again, if this were a real security system, it would be wise to have the "No go" output do something that deters an unauthorized person from discovering the correct code by trial-and-error. In other words, there should be some sort of penalty for entering an incorrect code. Let your imagination guide your design of this detail!

LED sequencer


PARTS AND MATERIALS
4017 decade counter/divider (Radio Shack catalog # 276-2417)
555 timer IC (Radio Shack catalog # 276-1723)
Ten-segment bargraph LED (Radio Shack catalog # 276-081)
One SPST switch
One 6 volt battery
10 kΩ resistor
1 MΩ resistor
0.1 µF capacitor (Radio Shack catalog # 272-135 or equivalent)
Coupling capacitor, 0.047 to 0.001 µF
Ten 470 Ω resistors
Audio detector with headphones
Caution! The 4017 IC is CMOS, and therefore sensitive to static electricity!
Any single-pole, single-throw switch is adequate. A household light switch will work fine, and is readily available at any hardware store.
The audio detector will be used to assess signal frequency. If you have access to an oscilloscope, the audio detector is unnecessary.
INSTRUCTIONS
The model 4017 integrated circuit is a CMOS counter with ten output terminals. One of these ten terminals will be in a "high" state at any given time, with all others being "low," giving a "one-of-ten" output sequence. If low-to-high voltage pulses are applied to the "clock" (Clk) terminal of the 4017, it will increment its count, forcing the next output into a "high" state.
With a 555 timer connected as an astable multivibrator (oscillator) of low frequency, the 4017 will cycle through its ten-count sequence, lighting up each LED, one at a time, and "recycling" back to the first LED. The result is a visually pleasing sequence of flashing lights. Feel free to experiment with resistor and capacitor values on the 555 timer to create different flash rates.
Try disconnecting the jumper wire leading from the 4017's "Clock" terminal (pin #14) to the 555's "Output" terminal (pin #3) where it connects to the 555 timer chip, and hold its end in your hand. If there is sufficient 60 Hz power-line "noise" around you, the 4017 will detect it as a fast clock signal, causing the LEDs to blink very rapidly.
Two terminals on the 4017 chip, "Reset" and "Clock Enable," are maintained in a "low" state by means of a connection to the negative side of the battery (ground). This is necessary if the chip is to count freely. If the "Reset" terminal is made "high," the 4017's output will be reset back to 0 (pin #3 "high," all other output pins "low"). If the "Clock Enable" is made "high," the chip will stop responding to the clock signal and pause in its counting sequence.
If the 4017's "Reset" terminal is connected to one of its ten output terminals, its counting sequence will be cut short, or truncated. You may experiment with this by disconnecting the "Reset" terminal from ground, then connecting a long jumper wire to the "Reset" terminal for easy connection to the outputs at the ten-segment LED bargraph. Notice how many (or how few) LEDs light up with the "Reset" connected to any one of the outputs:

7-segment display


PARTS AND MATERIALS
4511 BCD-to-7seg latch/decoder/driver (Radio Shack catalog # 900-4437)
Common-cathode 7-segment LED display (Radio Shack catalog # 276-075)
Eight-position DIP switch (Radio Shack catalog # 275-1301)
Four 10 kΩ resistors
Seven 470 Ω resistors
One 6 volt battery
Caution! The 4511 IC is CMOS, and therefore sensitive to static electricity!

INSTRUCTIONS
This experiment is more of an introduction to the 4511 decoder/display driver IC than it is a lesson in how to "build up" a digital function from lower-level components. Since 7-segment displays are very common components of digital devices, it is good to be familiar with the "driving" circuits behind them, and the 4511 is a good example of a typical driver IC.
Its operating principle is to input a four-bit BCD (Binary-Coded Decimal) value, and energize the proper output lines to form the corresponding decimal digit on the 7-segment LED display. The BCD inputs are designated A, B, C, and D in order from least-significant to most-significant. Outputs are labeled a, b, c, d, e, f, and g, each letter corresponding to a standardized segment designation for 7-segment displays. Of course, since each LED segment requires its own dropping resistor, we must use seven 470 Ω resistors placed in series between the 4511's output terminals and the corresponding terminals of the display unit.
Most 7-segment displays also provide for a decimal point (sometimes two!), a separate LED and terminal designated for its operation. All LEDs inside the display unit are made common to each other on one side, either cathode or anode. The 4511 display driver IC requires a common-cathode 7-segment display unit, and so that is what is used here.
After building the circuit and applying power, operate the four switches in a binary counting sequence (0000 to 1111), noting the 7-segment display. A 0000 input should result in a decimal "0" display, a 0001 input should result in a decimal "1" display, and so on through 1001 (decimal "9"). What happens for the binary numbers 1010 (10) through 1111 (15)? Read the datasheet on the 4511 IC and see what the manufacturer specifies for operation above an input value of 9. In the BCD code, there is no real meaning for 1010, 1011, 1100, 1101, 1110, or 1111. These are binary values beyond the range of a single decimal digit, and so have no function in a BCD system. The 4511 IC is built to recognize this, and output (or not output!) accordingly.
Three inputs on the 4511 chip have been permanently connected to either Vdd or ground: the "Lamp Test," "Blanking Input," and "Latch Enable." To learn what these inputs do, remove the short jumpers connecting them to either power supply rail (one at a time!), and replace the short jumper with a longer one that can reach the other power supply rail. For example, remove the short jumper connecting the "Latch Enable" input (pin #5) to ground, and replace it with a long jumper wire that can reach all the way to the Vdd power supply rail. Experiment with making this input "high" and "low," observing the results on the 7-segment display as you alter the BCD code with the four input switches. After you've learned what the input's function is, connect it to the power supply rail enabling normal operation, and proceed to experiment with the next input (either "Lamp Test" or "Blanking Input").
Once again, the manufacturer's datasheet will be informative as to the purpose of each of these three inputs. Note that the "Lamp Test" (LT) and "Blanking Input" (BI) input labels are written with boolean complementation bars over the abbreviations. Bar symbols designate these inputs as active-low, meaning that you must make each one "low" in order to invoke its particular function. Making an active-low input "high" places that particular input into a "passive" state where its function will not be invoked. Conversely, the "Latch Enable" (LE) input has no complementation bar written over its abbreviation, and correspondingly it is shown connected to ground ("low") in the schematic so as to not invoke that function. The "Latch Enable" input is an active-high input, which means it must be made "high" (connected to Vdd) in order to invoke its function.

Solar Panel Regulator

The circuit
When the panel isn't generating, the entire circuit is off and there is absolutely no current drain from the battery. When the sun gets up and panel starts producing at least 10 Volt, the LED lights and the two small transistors switch on. This powers the regulator circuit. As long as the battery voltage stays below 14V, the operational amplifier (which is a very low power device) will keep the MOSFET off, so nothing special will happen and the panel current will go through the Schottky diode to the battery. When the battery reaches the trigger voltage, which is nominally 14.0V, U1 switches on the MOSFET. This shorts out the solar panel (a condition that is perfectly safe), the battery no longer gets charging current, the LED goes off, the two small transistors go off, and C2 powers the regulator circuit while slowly discharging. After roughly 3 seconds, C2 has discharged enough to overcome the hysteresis of U1, which switches the MOSFET off again. Now the circuit will again charge the battery, until it again reaches the trigger voltage. In this way, the regulator works in cycles, with each OFF period being 3 seconds, and each ON period lasting for as long as necessary for the battery to reach 14.0V. The pulse length will vary according to the current demand of the battery and any load connected to it. The minimal ON time is given by the time C2 takes to charge up with the current limited by Q3 to roughly 40mA. This time is quite short, so this regulator can work down to very short pulses.
Construction
Building this circuit is very simple. All components are widely available, and most can be easily replaced by other types if necessary. I would not advice to replace the TLC271 nor the LM385-2.5 by different ones, unless you know very well what you are doing. Both of them are low power devices, and their power consumption directly defines the OFF time of the regulator. If you use replacements that have a different power consumption, you will need to change the value of C2, adjust the biasing of Q3, and maybe even then you might run into unexpected trouble. The MOSFET can easily be replaced by any type you like, as long as its RDSON is low enough so that its dissipation will remain acceptable at the maximum current delivered by your panel. For D2, basically any diode is acceptable as long as it can safely handle the total current produced by your panel. A Schottky diode like the one shown is an advantage because it will produce only half as much voltage drop as a standard silicon diode, and thus generate only half as much heat. But a standard diode is perfectly suitable if properly sized and mounted. With the components shown, the regulator comfortably handles a 4 Ampere panel. For larger panels, only the MOSFET and diode need to be replaced by larger ones. The rest of the circuit remains the same. No heat sink is required for the power level shown. The indicated MOSFET can handle a much larger panel if fitted with a modest heat sink. R8 in this circuit is 92k, which is a nonstandard value. I suggest that you use an 82k resistor in series with a 10k one, which is simpler than trying to find a special resistor. R8, R10 and R6 define the cutoff voltage, so it's nice if they are reasonably accurate. I used 5% resistors, which usually are a lot better than the rated 5%, but if you want to be on the safe side, use 1% resistors here or pick the more precise 5% ones after measuring several with a digital meter. You could also include a trimpot in this circuit, so that you can adjust the voltage, but I would not suggest this if your application calls for high reliability in a corrosive environment, like mine did. Trimpots just do fail in these conditions.

Tuesday, October 9, 2007

Optical obstacle switch


The 555 monostable has a 1 second period, If pin 2 gets low trigger pulses of a frequency more than 1 Hz, the output pin 3 will remain high, if the trigger pulses came in 10 second delays then output will go on and off, so also the relay and the electrical load on relay contacts. Like an integrator, it will not operate relay very fast. Even in a fridge stabilizer they put something like this else the compressor motor is damaged on frequent black-brown outs.
Now for the LM567 part, The clock at pin 5 flashes the IR Transmitter LED LD1 at a frequency set by C7-R5. The IR Photo Sensitive Diode or Transistor LD2 conducts when light is got from the IR LED. As the lights is in pulses, so also the impedance of LD2 goes low and high at same frequency. This develops an AC waveform across R3 over a DC representing Ambient light. If direct sunlight falls on this arrangement, the Photo-diode saturates, then this circuit or any other circuit won't work. But when ample protection from ambient light is made, some pulses good enough for LM567 tone detection, 100mV rms, is obtained and it operates the relay via a LM555.

Battery Level Indicator


R16 a 5W ceramic wire wound bleeder or dummy load. R15 is a part of an attenuator for obtaining ranges. D2 is a protection clamp diode. R10-D1 forms the 5V reference for comparators. Then an attenuator obtains 1.2, 1.4, 1.6, 1.8 V steps for each comparator. This circuit is similar to Audio Level meter or VU meter circuit.
The comparator compares the battery sample voltage to the fixed reference step. If '+' pin is more positive than '-', or is '+' is more dominant, then output goes floating 'open collector', so No LED light . But if '-' is more dominant the output transistor of comparator goes low impedance or saturates or turns 'ON'. But only spec current can be switched, do not compare with electrical switch 'ON'. Also on a dual supply 0V is more dominant or positive compared with -12V, even though it appears -12V is a big number. The direction of current is what decides, all measurements are relative.

Pulse width modulator using555


IC1 astable gives a fixed square wave at pin 3, C1 and R1 derive uS trigger pulses from IC1 and this will trigger IC2 monostable or single shot, the voltage at pin 5 of IC2 will change the pulse width output of IC2, to get it working all the three RC combinations have to be figured out, you can even build a small SMPS with this or even control the temperature of your soldering iron using the SSR solid state relay circuits in power section, then you need to think and design the cycle time of a soldering iron heat control system, it will be in seconds but then above circuit is running at audio frequencies, then you have to work that out yourself.

Monday, October 8, 2007

Clap Activated Remote

An infra-red or wireless remote control has the disadvantage that the small, handy, remote transmitter is often misplaced. The sound operated switch has the advantage that the transmitter is always with you. This project offers a way to control up to four latching switches with two claps of your hand. These switches may be used to control lights or fans – or anything else that does not produce too loud a sound. To prevent an occasional loud sound from causing malfunction, the circuit is normally quiescent. The first clap takes it out of standby state and starts a scan of eight panel-mounted LEDs. Each of the four switches are accompanied with two LEDs – one for indicating the ‘on’ and the other for indicating the ‘off’ state. A second clap, while the appropriate LED is lit, activates that function. For example, if you clap while LED10 used in conjunction with Lamp 1 is lit then the lamp turns on. (If it is already on, nothing happens and it remains on.) A condenser microphone, as used in tape recorders, is used here to pick up the sound of the claps. The signal is then amplified and shaped into a pulse by three inverters (N1 through N3) contained in CMOS hex inverter IC CD4069. A clock generator built from two of the inverter gates (N5 and N6) supplies clock pulses to a decade counter CD4017 (IC2). Eight outputs of this IC drive LEDs (1 through 8). These outputs also go to the J and K inputs of four flip-flops in two type CD4027 ICs (IC3 and IC4). The clock inputs of these flip-flops are connected to the pulse shaped sound signal (available at the output of gate N3). Additional circuitry around the CD4017 counter ensures that it is in the reset state, after reaching count 9, and that the reset is removed when a sound signal is received. Outputs of the four flip-flops are buffered by transistors and fed via LEDs to the gates of four triacs. These triacs switch the mains supply to four loads, usually lamps. If small lamps are to be controlled, these may be directly driven by the transistors. If this circuit is to be active, i.e. scanning all the time, some components around CD4017 IC could be omitted and some connections changed. But then it would no longer be immune to an occasional, spurious loud sound. The condenser microphone usually available in the market has two terminals. It has to be supplied with power for it to function. Any interference on this supply line will be passed on to the output. So the supply for the microphone is smoothed by resistor-capacitor combination of R2, C1 and fed to it via resistor R1. CD4069, a hex unbuffered inverter, contains six similar inverters. When the output and input of such an inverter is bridged by a resistor, it functions as an inverting amplifier. Capacitor C2 couples the signal developed by the microphone to N1 inverter in this IC, which is configured as an amplifier. The output of gate N1 is directly connected to the input of next gate N2. Capacitor C3 couples the output of this inverter to N3 inverter, which is connected as an adjustable level comparator. Inverter N4 is connected as an LED (9) driver to help in setting the sensitivity. Preset VR1 supplies a variable bias to U3. If the wiper of VR1 is set towards the negative supply end, the circuit becomes relatively insensitive (i.e. requires a thunderous clap to operate). As the wiper is turned towards resistor R4, the circuit becomes progressively more sensitive. The sound signal supplied by gate N2 is added to the voltage set by preset VR1 and applied to the input of gate N3. When this voltage crosses half supply voltage, the output of gate N3 goes low. This output is normally high since the input is held low by adjustment of preset VR1. This output is used for two things: First, it releases the reset state of IC2 via diode D1. Second, it feeds the clock inputs to the four flip-flops contained in IC3 and IC4. In the quiescent state, IC2 is reset and its ‘Q0’ output is high. Capacitor C4 is charged positively and it holds this charge due to the connection from R5 to this output (Q0). IC2 is a decade counter with fully decoded outputs. It has ten outputs labelled Q0 to Q9 which go successively high, one at a time, when the clock in put is fed with pulses. IC3 and IC4 are dual JK flip-flops. In this circuit they store (latch) the state of the four switches and control the output through transistors and triacs. At the first clap, the output of gate N3 goes low. Diode D1 is forward biased and it conducts, discharging capacitor C4. The reset input of IC2 goes low, releasing its reset state. All the J and K inputs of the four flip-flops are low and so these do not change state, even though their clock inputs receive pulses. When the reset input of IC2 is low, each clock pulse causes IC2 to advance by one count and its outputs go high successively, lighting up the corresponding LEDs and pulling high the J and K inputs of the four flip-flops, one after the other. Resistor R8 limits the current through LEDs 1 through 8 to about 2 mA. Larger current might cause malfunction due to the outputs of IC2 being pulled down below the logic 1 state input voltage. If a second clap is detected while the J input of a particular flip-flop is high, its Q output will go high, regardless of what state it was in previously. Similarly, if its K input was high, the output will go low. (If both J and K are high, the output will change state at each clock pulse.) Thus although all flip-flops receive the clap signal at their clock inputs, only the one selected by the active output of IC2 will change state. Resistor R9 and capacitor C6 ensure that the flip-flops start in the off state when power to the circuit is switched on, by providing a positive power-on-reset pulse to the reset input pins when power is applied. The preset input pins are not used and are therefore connected directly to ground. When, after eight clock pulses, output Q8 of IC2 becomes high, diode D2 conducts, charging capacitor C4, thereby resetting IC2 and making its Q0 output high. And there it stays, awaiting the next clap. The four Q outputs of IC3 and IC4 are buffered by npn transistors, fed through current limiting resistors and LEDs (to indicate the on/off state of the loads) to the gates of four triacs. Four lamps operating on the mains may thus be controlled. For demonstrations, it might be better to drive small lamps (drawing less than 100 mA at 12V) directly from the emitters of the transistors. In this case the triacs, LEDs and their associated current limiting resistors may be omitted. It has to be noted that one side of the mains has to be connected to the negative supply line of this circuit when mains loads are to be controlled. This necessitates safe construction of the circuit such that no part of it is liable to be touched. The advantage is that it may be mounted out of reach of curious hands since it does not need to be handled during normal operation. It is advisable to start with the low voltage version and then upgrade to mains operation, once you are sure everything else is working satisfactorily. CMOS ICs are used in this circuit for implementing the amplifying and logic functions. Use of a dedicated supply is recommended because the integrated circuits will be damaged if the supply voltage is too high, or is of wrong polarity. An external power supply may get connected up the wrong way around, or be inadvertently set to too high a voltage. Therefore it is a good idea to start by constructing the power supply section and then add the other components of the circuit. If the clock is working, you may turn your attention to the amplifier. LED9 should be off, and should flash when the terminals of capacitor C2 are touched with a wet finger (the classic wet finger test). Preset VR1 may need to be adjusted until LED9 just turns off. The output of gate N2 will be at about half the supply voltage. The output of gate N3 would normally be high. The voltage at the input of gate N3 should vary when preset VR1 is varied. High-efficiency LEDs should preferably be used in this circuit. The microphone has two terminals, one of which is connected to its body. This terminal has to be connected to circuit ground, and the other to the junction of resistor R2 and capacitor C2. These wires are preferably kept short (one or two centimetres) to avoid noise pickup. With the microphone connected, a loud sound (a clap) should result in LED9 blinking. Adjust preset VR1 so that LED9 stays off on the loudest of background noises but starts glowing when you clap. If the clap-to-start feature is not required, it may be disabled by omitting components D1, D2, R5, C4 and connecting a wire link in place of diode D2. Then IC2 will be alive and kicking all the time.

Simple variable frequency oscillator





This is a very simple circuit utilising a 555 timer IC to generate square wave of frequency that can be adjusted by a potentiometer.
With values given the frequency can be adjusted from a few Hz to several Khz.To get very low frequencies replace the 0.01uF capacitor with a higher value.
The formula to calculate the frequency is given by:
1/f = 0.69 * C * ( R1 + 2*R2)The duty cycle is given by:
% duty cycle = 100*(R1+R2)/(R1+ 2*R2)
In order to ensure a 50% (approx.) duty ratio, R1 should be very small when compared to R2. But R1 should be no smaller than 1K.A good choice would be, R1 in kilohms and R2 in megaohms. You can then select C to fix the range of frequencies.

Infrared beam barrier/ proximity sensor



This circuit can be used as an Infrared beam barrier as well as a proximity detector.The circuit uses the very popular Sharp IR module. The pin nos. shown in the circuit are for the Sharp module only. For other modules please refer to their respective datasheets.The receiver consists of a 555 timer IC working as an oscillator at about 38Khz which has to be adjusted using the 10K preset. The duty cycle of the IR beam is about 10%. This allows us to pass more current through the LEDS thus achieving a longer range.The receiver uses a sharp IR module. When the IR beam from the transmitter falls on the IR module, the output is activated which activates the relay and de-activated when the beam is obstructed. The relay contacts can be used to turn ON/OFF alarms, lights etc. The 10K preset should be adjusted until the receiver detects the IR beam.
The circuit can also be used as a proximity sensor, i.e to detect objects in front of the device without obstructing a IR beam. For this the LEDs should be pointed in the same direction as the IR module and at the same level. The suggested arrangement is shown in the circuit diagram. The LEDs should be properly covered with a reflective material like glass or aluminum foils on the sides to avoid the spreading of the IR beam and to get a sharp focus of the beam.When there is nothing in front of them, the IR beam is not reflected onto the module and hence the circuit is not activated. When an object comes near the device, the IR light from the LEDs is reflected by the object onto the module and hence the circuit gets activated. The 2.2K preset is used to adjust the sensitivity of the receiver. If the relay is trigger by noise, adjust the 2.2K preset to its maximum. If there still a lot of mis-triggering, use a 1uF or higher capacitor instead of the 0.47uF.

Police Siren



This circuit produces a sound similar to the police siren. It makes use of two 555 timer ICs used as astable multivibrators. The frequency is controlled by the pin 5 of the IC. The first IC (left) is wired to work around 1Hz. The 47uF capacitor is charged and discharged periodically and the voltage across it gradually increases and decreases periodically.This varying voltage modulates the frequency of the 2nd IC. This process repeats and what you hear is the sound remarkably similar to the police siren.Two presets VR1 and VR2 are provided to vary the siren period of repetition and the tone of the siren.By varying VR1 you can set how fast the siren changes from high freq. to low freq.VR2 sets the siren frequency. Adjust VR1 and VR2 to suit your taste.

Water Level Indicator with alarm



This circuit not only indicates the amount of water present in the overhead tank but also gives an alarm when the tank is full.The circuit uses the widely available CD4066, bilateral switch CMOS IC to indicate the water level through LEDs.When the water is empty the wires in the tank are open circuited and the 180K resistors pulls the switch low hence opening the switch and LEDs are OFF. As the water starts filling up, first the wire in the tank connected to S1 and the + supply are shorted by water. This closes the switch S1 and turns the LED1 ON. As the water continues to fill the tank, the LEDs2 , 3 and 4 light up gradually.The no. of levels of indication can be increased to 8 if 2 CD4066 ICs are used in a similar fashion.
When the water is full, the base of the transistor BC148 is pulled high by the water and this saturates the transistor, turning the buzzer ON. The SPST switch has to be opened to turn the buzzer OFF.Remember to turn the switch ON while pumping water otherwise the buzzer will not sound!

Ultrasonic Switch




C ircuit of a new type of remote control switch is described here. This circuit functions with inaudible (ultrasonic) sound. Sound of frequency up to 20 kHz is audible to human beings. The sound of frequency above 20 kHz is called ultrasonic sound. The circuit described generates (transmits) ultrasonic sound of frequency between 40 and 50 kHz. As with any other remote control system this cirucit too comprises a mini transmitter and a receiver circuit. Transmitter generates ultrasonic sound and the receiver senses ultrasonic sound from the transmitter and switches on a relay. The ultrasonic transmitter uses a 555 based astable multivibrator. It oscillates at a frequency of 40-50 kHz. An ultrasonic transmitter transducer is used here to transmit ultrasonic sound very effectively. The transmitter is powered from a 9-volt PP3 single cell. The ultrasonic receiver circuit uses an ultrasonic receiver transducer to sense ultrasonic signals. It also uses a two-stage amplifier, a rectifier stage, and an operational amplifier in inverting mode. Output of op-amp is connected to a relay through a complimentary relay driver stage. A 9-volt battery eliminator can be used for receiver circuit, if required. When switch S1 of transmitter is pressed, it generates ultrasonic sound. The sound is received by ultrasonic receiver transducer. It converts it to electrical variations of the same frequency. These signals are amplified by transistors T3 and T4. The amplified signals are then rectified and filtered. The filtered DC voltage is given to inverting pin of op-amp IC2. The non- inverting pin of IC2 is connected to a variable DC voltage via preset VR2 which determines the threshold value of ultrasonic signal received by receiver for operation of relay RL1. The inverted output of IC2 is used to bias transistor T5. When transistor T5 conducts, it supplies base bias to transistor T6. When transistor T6 conducts, it actuates the relay. The relay can be used to control any electrical or electronic equipment. Important hints:1. Frequency of ultrasonic sound generated can be varied from 40 to 50 kHz range by adjusting VR1. Adjust it for maximum performance.2. Ultrasonic sounds are highly directional. So when you are operating the switch the ultrasonic transmitter transducer of transmitter should be placed towards ultrasonic receiver transducer of receiver circuit for proper functioning.3. Use a 9-volt PP3 battery for transmitter. The receiver can be powered from a battery eliminator and is always kept in switched on position.4. For latch facility use a DPDT relay if you want to switch on and switch off the load. A flip-flop can be inserted between IC2 and relay. If you want only an ‘ON-time delay’ use a 555 only at output of IC2. The relay will be energised for the required period determined by the timing components of 555 monostable multivibrator.5. Ultrasonic waves are emitted by many natural sources. Therefore, sometimes, the circuit might get falsely triggered, espically when a flip-flop is used with the circuit, and there is no remedy for that.


Infrared Head Phones





Using this low-cost project one can reproduce audio from TV without disturbing others. It does not use any wire connection between TV and headphones. In place of a pair of wires, it uses invisible infrared light to transmit audio signals from TV to headphones. Without using any lens, a range of up to 6 metres is possible. Range can be extended by using lenses and reflectors with IR sensors comprising transmitters and receivers.IR transmitter uses two-stage transistor amplifier to drive two series-connected IR LEDs. An audio output transformer is used (in reverse) to couple audio output from TV to the IR transmitter. Transistors T1 and T2 amplify the audio signals received from TV through the audio transformer. Low-impedance output windings (lower gauge or thicker wires) are used for connection to TV side while high-impedance windings are connected to IR transmitter. This IR transmitter can be powered from a 9-volt mains adapter or battery. Red LED1 in transmitter circuit functions as a zener diode (0.65V) as well as supply-on indicator.IR receiver uses 3-stage transistor amplifier. The first two transistors (T4 and T5) form audio signal amplifier while the third transistor T6 is used to drive a headphone. Adjust potmeter VR2 for max. clarity.Direct photo-transistor towards IR LEDs of transmitter for max. range. A 9-volt battery can be used with receiver for portable operation.

TV remote control Blocker




Just point this small device at the TV and the remote gets jammed . The circuit is self explanatory . 555 is wired as an astable multivibrator for a frequency of nearly 38 kHz. This is the frequency at which most of the modern TVs receive the IR beam . The transistor acts as a current source supplying roughly 25mA to the infra red LEDs. To increase the range of the circuit simply decrease the value of the 180 ohm resistor to not less than 100 ohm.
It is required to adjust the 10K potentiometer while pointing the device at your TV to block the IR rays from the remote. This can be done by trial and error until the remote no longer responds. The estimated cost of the whole circuit including IR LEDS and battery is not more than Rs. 40/-

Negative Power Supply


Opamps are very useful. But one of their major drawbacks is the requirement of a dual supply. This seriously limits their applications in fields where a dual supply is not affordable or not practicable. This circuit solves the problem to a certain extent. It provides a negative voltage from a single positive supply. This negative voltage together with the positive supply can be used to power the opamps and other circuits requiring a dual supply.The circuits operation can be explained as follows:The 555 IC is operating as an astable multivibrator with a frequency of about 1kHz. A square wave is obtained at the pin 3 of the IC . When the output is positive, the 22uF capacitor charges through the diode D1. When the output at pin 3 is ground, the 22uF discharges through the diode D2 and charges the 100uF capacitor is charged. The output is taken across the 100uF capacitor as shown in the figure.
A disadvantage of this circuit is its poor voltage regulation and current limit. The max. current that can be drawn from this circuit is about 40mA. If you draw more current, the regulation will be lost.Also the output negative voltage will be a little less than the positive supply due to the diode drops. For example if the voltage is +9V then the output voltage will be about 7.5 V.

Tuesday, October 2, 2007


IR level Detector

Parts: R1_____________10K 1/4W Resistor R2,R5,R6,R9_____1K 1/4W Resistors R3_____________33R 1/4W Resistor R4,R8___________1M 1/4W Resistors R7_____________10K Trimmer Cermet R10____________22K 1/4W Resistor C1,C4___________1΅F 63V Electrolytic or Polyester Capacitors C2_____________47pF 63V Ceramic Capacitor C3,C5,C6______100΅F 25V Electrolytic Capacitors D1_____________Infra-red LED D2_____________Infra-red Photo Diode (see Notes) D3,D4________1N4148 75V 150mA Diode D5______________LED (Any color and size) D6,D7________1N4002 100V 1A Diodes Q1____________BC327 45V 800mA PNP Transistor IC1_____________555 Timer IC IC2___________LM358 Low Power Dual Op-amp IC3____________7812 12V 1A Positive voltage regulator IC RL1____________Relay with SPDT 2A @ 220V switch Coil Voltage 12V. Coil resistance 200-300 Ohm J1_____________Two ways output socket Device purpose: This circuit is useful in liquids level or proximity detection. It operates detecting the distance from the target by reflection of an infra-red beam. It can safely detect the level of a liquid in a tank without any contact with the liquid itself. The device's range can be set from a couple of cm. to about 50 cm. by means of a trimmer.Range can vary, depending on infra-red transmitting and receiving LEDs used and is mostly affected by the color of the reflecting surface. Black surfaces lower greatly the device's sensitivity. Circuit operation: IC1 forms an oscillator driving the infra-red LED by means of 0.8mSec. pulses at 120Hz frequency and about 300mA peak current. D1 & D2 are placed facing the target on the same line, a couple of centimeters apart, on a short breadboard strip. D2 picks-up the infra-red beam generated by D1 and reflected by the surface placed in front of it. The signal is amplified by IC2A and peak detected by D4 & C4. Diode D3, with R5 & R6, compensate for the forward diode drop of D4. A DC voltage proportional to the distance of the reflecting object and D1 & D2 feeds the inverting input of the voltage comparator IC2B. This comparator switches on and off the LED and the optional relay via Q1, comparing its input voltage to the reference voltage at its non-inverting input set by the Trimmer R7. Notes: Power supply must be regulated (hence the use of IC3) for precise reference voltages. The circuit can be fed by a commercial wall plug-in power supply, having a DC output voltage in the range 12-24V. Current drawing: LED off 40mA; LED and Relay on 70mA @ 12V DC supply. R10, C6, Q1, D6, D7, RL1 and J1 can be omitted if relay operation is not required. The infra-red Photo Diode D2, should be of the type incorporating an optical sunlight filter: these components appear in black plastic cases. Some of them resemble TO92 transistors: in this case, please note that the sensitive surface is the curved, not the flat one. Avoid sun or artificial light hitting directly D1 & D2. Usually D1-D2 optimum distance lies in the range 1.5-3 cm. from electronics-lab.com

Monday, October 1, 2007


This is the machine we created . its a manually controlled machine which picks up a block of weight 100 grams and places it on a platform of 60 cm height. we made this for a competition called nexus and we were placed 4th out of 40 teams.

Hello

Hi eveyone,my name is amith varghese paul. I am a student doing Btech. in EEE in india. I was always fascinated by different electronic circuits,about their working, cool outputs they give ,stuffs like that.I always searched for a site which had simple electronic projects ,but they always were either too hard to find or unavailable. thats why i decided to create this blog. So here i will be posting cool electronic circuits which is wither made by me or collected from other sites. i hope that i will be able to ive you what you search.....